Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
نویسندگان
چکیده
The outcome of defibrillation shocks is determined by the nonlinear transmembrane potential (DeltaVm) response induced by a strong external electrical field in cardiac cells. We investigated the contribution of electroporation to DeltaVm transients during high-intensity shocks using optical mapping. Rectangular and ramp stimuli (10-20 ms) of different polarities and intensities were applied to the rabbit heart epicardium during the plateau phase of the action potential (AP). DeltaVm were optically recorded under a custom 6-mm-diameter electrode using a voltage-sensitive dye. A gradual increase of cathodal and well as anodal stimulus strength was associated with 1) saturation and subsequent reduction of DeltaVm; 2) postshock diastolic resting potential (RP) elevation; and 3) postshock AP amplitude (APA) reduction. Weak stimuli induced a monotonic DeltaVm response and did not affect the RP level. Strong shocks produced a nonmonotonic DeltaVm response and caused RP elevation and a reduction of postshock APA. The maximum positive and maximum negative DeltaVm were recorded at 170 +/- 20 mA/cm2 for cathodal stimuli and at 240 +/- 30 mA/cm2 for anodal stimuli, respectively (means +/- SE, n = 8, P = 0.003). RP elevation reached 10% of APA at a stimulus strength of 320 +/- 40 mA/cm2 for both polarities. Strong ramp stimuli (20 ms, 600 mA/cm2) induced a nonmonotonic DeltaVm response, reaching the same largest positive and negative values as for rectangular shocks. The transition from monotonic to nonmonotonic morphology correlates with RP elevation and APA reduction, which is consistent with cell membrane electroporation. Strong shocks resulted in propidium iodide uptake, suggesting sarcolemma electroporation. In conclusion, electroporation is a likely explanation of the saturation and nonmonotonic nature of cellular responses reported for strong electric stimuli.
منابع مشابه
Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation
Introduction: Electroporation is a technique for increasing the permeability of the cell membrane to otherwise non-permeate molecules due to an external electric field. This permeability enhancement is detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the pulse strength threshold. In this study, the variabil...
متن کاملThe role of electroporation in defibrillation.
Electric shock is the only effective therapy against ventricular fibrillation. However, shocks are also known to cause electroporation of cell membranes. We sought to determine the impact of electroporation on ventricular conduction and defibrillation. We optically mapped electrical activity in coronary-perfused rabbit hearts during electric shocks (50 to 500 V). Electroporation was evident fro...
متن کاملNonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
Defibrillation shocks induce nonlinear changes of transmembrane potential (DeltaVm) that determine the outcome of defibrillation. As shown earlier, strong shocks applied during action potential plateau cause nonmonotonic negative DeltaVm, where an initial hyperpolarization is followed by Vm shift to a more positive level. The biphasic negative DeltaVm can be attributable to (1) an inward ionic ...
متن کاملEffect of electroporation on cardiac electrophysiology.
Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells, resulting in resynchronization of electrical activity in the heart. If shock-induced transmembrane potentials are large enough, they can cause transient tissue damage due to electropora...
متن کاملFinite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation
Introduction: Irreversible electroporation (IRE) is a process in which the membrane of the cancer cells are irreversibly damaged with the use of high-intensity electric pulses, which in turn leads to cell death. The IRE is a non-thermal way to ablate the cancer cells. This process relies on the distribution of the electric field, which affects the pulse amplitude, width, and electrical conducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 1 شماره
صفحات -
تاریخ انتشار 2004